SIDDHARTH INSTITUTE OF ENGINEERING AND TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code : <u>Adaptive signal Processing</u> (16EC3804)

Course & Branch: M.Tech – (DECS) Year & Sem: I M.Tech & I-Sem

UNIT -I

EIGEN ANALYSIS & INTRODUCTION TO ADAPTIVE SYSTEMS

1 (a) Write the properties of Eigen values and Eigen vectors.	[5M]	
(b) Explain about importance of Eigen filters.	[5M]	
2 (a) With the help of a diagram explain about adaptive linear combiner.	[5M]	
(b) Write a short note on gradient and minimum mean-square error.	[5M]	
3(a) With the help of block diagram explain the principle of adaptation in detail. And give the		
application of the system for real time analysis.	[6M]	
(b) Write about adaptive channel equalization.	[4M]	
4(a) Find the Eigen values and Eigen vectors of the matrix.	[5M]	
$A = \begin{bmatrix} 4 & 5 & 2 \\ 5 & 4 & 2 \\ 2 & 2 & 2 \end{bmatrix}$		
(b) Define energy density spectrum and power density spectrum of random sequences and clear distinguish between them with examples.	rly [5M]	
5(a) Show that the Eigen values of correlation matrix are bounded by minimum and maximum values		
of the power density spectrum.	[5M]	
(b) Explain an application of a low rank modeling of Eigen values in communication systems.	[5M]	
6(a) Explain in detail about Eigen value problem.	[5M]	
(b)With neat sketch explain open loop and closed loop adaptive systems.	[5M]	
7(a) Verify which of the following discrete time signals are eigen functions of stable, linear time		
invariant discrete time systems. (i) $e^{j2\pi n/3}$ (ii) 5^n (iii) 4^n u(-n-1)	[5M]	
(b) State and prove unitary similarity transformation property for eigen values.	[5M]	
8(a) Explain Eigen value computation.	[5M]	
(b)What are the Eigen values and Eigen vectors?	[5M]	
9(a) Explain i) Echo cancellation ii) Noise cancellation methods in adaptive signal processing.	[6M]	

(b) Define i) Hermitian Matrice ii) Eigen Decomposition

[4M]

10(a) Find the characteristic equation of the given matrix and also find Eigen vectors.

[5M]

$$A = \begin{bmatrix} 3 & 4 & 2 \\ 1 & 4 & 8 \\ 1 & 1 & 2 \end{bmatrix}$$

(b) State and prove Minimax theorem for Eigen values and Eigen vectors.

[5M]

UNIT –II

DEVELOPMENT OF ADAPTIVE FILTER THEORY & SEARCHING THE PERFORMANCE SURFACE

1(a) Write about gradient search methods.

[4M]

(b) Derive the equation for simple gradient searching algorithm and its solution.

[6M]

2(a) Explain about the significance of Wiener Hopf equations in adaptive filter theory.

[5M]

- (b) Obtain normal equation and derive the optimum solution for wiener coefficients in terms of input sequence. [5M]
- 3(a) Explain the principle of Wiener filter and discuss clearly the estimation procedure in Wiener filters. [5M]
- (b)Explain stability and rate of convergence.

[5M]

4. State and derive the expression for principle of orthogonally and its dual. Explain their geometric

interpretations. [10M]

- 5(a) Discuss clearly the power spectral analysis using model-based approach and bring out the basic concept of this method. [6M]
 - (b) Discuss about smoothing and prediction.

[4M]

6 (a) Explain linear optimum filtering problem.

[5M]

(b)Derive the expression for Minimum Mean Square Error.

- [5M]
- 7 (a) For the given data R and P, evaluate the tap weights produced by the wiener filter.

[5M]

$$R = \begin{bmatrix} 1 & 0.5 & 0.25 \\ 0.5 & 1 & 0.5 \\ 0.25 & 0.5 & 1 \end{bmatrix} \quad P = \begin{bmatrix} 0.5 & 0.25 & 0.125 \end{bmatrix}$$

(b)Calculate Minimum Mean Square Error for the above given matrix

[5M]

8(a) Explain the development of adaptive filter theory.

[5M]

(b) Explain about searching the performance surface.

[5M]

9(a) The R matrix and p vector is defined as is defined as

$$R = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}_{P} = \begin{bmatrix} 0.25 & 0.5 \end{bmatrix}$$

Find the tap weights of the wiener filter.

[5M]

- (b) Find the value of the minimum mean square error produced by wiener filter for the above given matrix. [5M]
- 10(a) Explain the ideas of gradient search methods.

[5M]

(b) What are the methods used for searching the performance surface?

[5M]

UNIT -III

STEEPEST DESCENT & LMS ALGORITHMS

STEEPEST DESCENT & LMS ALGORITHMS		
1(a) Explain Newton's method in multidimensional space.	[5M]	
(b)Explain gradient search by the method of steepest descent. And compare this method with	h	
Newton's method.	[5M]	
2(a) Explain overview of the structure of LMS algorithm.	[5M]	
(b) Explain about Adaptive line enhancement.	[5M]	
3 (a) What are the necessary conditions for the convergence of LMS algorithm?	[5M]	
(b) Write a short note on implementation of LMS algorithm.	[5M]	
4. Describe about learning curves and bring out its importance with respect to gradient search		
algorithms.	[10M]	
5(a) Explain clearly the linear estimation of signals.	[4M]	
(b)Discuss the three applications of linear estimation in brief.	[6M]	
6(a) Derive the condition for stability of an LMS algorithm.	[5M]	
(b) Explain noise cancelling application of LMS algorithm.	[5M]	
7(a) Discuss clearly the power spectral analysis using model-based approach and bring out the	basic	
concept of this method.	[5M]	
(b) Explain statistical LMS algorithm.	[5M]	
8 (a) Explain the principle and operation of LMS algorithm.	[5M]	
(b) Discuss about the principle of operation of adaptive beam forming.	[5M]	
9(a) Explain about LMS adaptation algorithms.	[5M]	
(b) Explain echo cancelling application of LMS algorithm in telephone circuits.	[5M]	
10. The performance surface is given by $\gamma=11+4w+0.5w^2$, . What is the range of convergence parameter		
will provide an over damped weight adjustment curve.	[10M]	
ADAPTIVE SIGNAL PROCESSING	Page 3	

<u>UNIT –IV</u>

RLS ALGORITHM

1. (a) Draw the block diagram and signal flow graph of an RLS algorithm and derive an expre	ssion for	
it.	[6M]	
(b) What is matrix inversion lemma and explain it?	[4M]	
2(a) Derive the condition for mean-square deviation of RLS algorithm.	[5M]	
(b) Explain importance of transversal filters in RLS algorithm.	[5M]	
3(a) Discuss about convergence behavior of RLS algorithm.	[5M]	
(b)Explain about ensemble average learning curves.	[5M]	
4(a) Explain about the recursion for updating the sum of weighted error squares and why.	[5M]	
(b) Write about convergence analysis of RLS algorithm.	[5M]	
5(a) Explain how RLS algorithm is used in adaptive equalization.	[5M]	
(b) Explain about the selection of the regularization parameter.	[5M]	
6(a) Discuss about the recursive mean square estimation for random variables.	[6M]	
(b) Explain single-weight adaptive noise canceller.	[4M]	
7(a) Explain exponentially weighted recursive lest square algorithm.	[7M]	
(b) Explain signal to noise ratio for adaptive equalization	[3M]	
8. Explain about recursion for the sum of weighted error squares.	[10M]	
9(a) Explain about applications of RLS algorithm on adaptive equalization.	[5M]	
(b) Explain the concept of regularization.	[5M]	
10(a) Explain the importance of RLS algorithm in Adaptive signal processing.	[5M]	
(b) What are the advantages of RLS algorithm over LMS algorithm.	[5M]	
<u>UNIT –V</u>		
KALMAN & NON-LINEAR ADAPTIVE FILTERING		
1. (a) Write about statement of Kalman filtering problem and explain it.	[5M]	
(b) Explain how Kalman gain vector is computed in LMS algorithm.	[5M]	
2(a) Write about blind equalization.	[5M]	
(b) Discuss the principles of adaptive echo-canceller.	[5M]	
3 (a) What is an extended Kalman filter? Explain how the block diagram of a Kalman filter is to be		
modified to derive extended Kalman filter.	[5M]	
(b) Draw the signal-flow graph representation of the Kalman and extended Kalman filters. Show that		
for a linear model of a dynamic system these two representations are same.	[5M]	

QUESTION	N BANK 2016	
4 (a)Explain Bussgang algorithm for blind equalization.	[5M]	
(b)Explain about Blind equalizer in detail.	[5M]	
5(a) Discuss about the recursive mean square estimation for random variables.	[6M]	
(b) What are the practical considerations for subspace decomposition?	[4M]	
6 (a) Write the different approaches for blind deconvolution.	[5M]	
(b) Explain an algorithm used for blind equalization	[5M]	
7. With the help of block diagram explain Kalman filter. Discuss the role of each block with necessary		
equations.	[10M]	
8 (a) Explain Square root filtering phenomenon.	[5M]	
(b) Explain about various considerations for blind deconvolution.	[5M]	
9. Write short notes on the following with respect to Kalman filter:		
(a) Divergence phenomenon	[5M]	
(b) UD factorization	[5M]	
10(a) Write a short note on recursive mean square estimation of random variable.	[5M]	
(b) Briefly discuss about extended Kalman filtering.	[5M]	

Prepared by: **P.SAI KUSUMA-ECE Dept**